NASA Year in Review

WASHINGTON (NASA PR) — In 2015, NASA explored the expanse of our solar system and beyond, and the complex processes of our home planet, while also advancing the technologies for our journey to Mars, and new aviation systems as the agency reached new milestones aboard the International Space Station.

(more…)

Pluto’s Moons Orbit Planet in Very Odd Ways

Video Caption: Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning tops. Pluto is shown at center with, in order, from smaller to wider orbit: Charon, Styx, Nix, Kerberos, Hydra.

NATIONAL HARBOR, Md. (NASA PR) — The New Horizons mission is shedding new light on Pluto’s fascinating system of moons, and their unusual properties. For example, nearly every other moon in the solar system — including Earth’s moon — is in synchronous rotation, keeping one face toward the planet. This is not the case for Pluto’s small moons.

(more…)

Pluto Might Have Volcanoes That Spew Molten Ice

Using New Horizons images of Pluto’s surface to make 3-D topographic maps, scientists discovered that two of Pluto’s mountains, informally named Wright Mons and Piccard Mons, could be ice volcanoes. The color depicts changes in elevation, blue indicating lower terrain and brown showing higher elevation. Green terrains are at intermediate heights. )Credits: NASA/JHUAPL/SwRI
Using New Horizons images of Pluto’s surface to make 3-D topographic maps, scientists discovered that two of Pluto’s mountains, informally named Wright Mons and Piccard Mons, could be ice volcanoes. The color depicts changes in elevation, blue indicating lower terrain and brown showing higher elevation. Green terrains are at intermediate heights. )Credits: NASA/JHUAPL/SwRI

NATIONAL HARBOR, Md. (NASA PR) — From possible ice volcanoes to twirling moons, NASA’s New Horizons team is discussing more than 50 exciting discoveries about Pluto at this week’s 47th Annual Meeting of the American Astronomical Society’s Division for Planetary Sciences in National Harbor, Maryland.

(more…)

First Pluto Research Paper Paints Portrait of Wild, Diverse World

This high-resolution image captured by NASA’s New Horizons spacecraft combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). The bright expanse is the western lobe of the “heart,” informally called Sputnik Planum, which has been found to be rich in nitrogen, carbon monoxide and methane ices. (Credits: NASA/JHUAPL/SwRI)
This high-resolution image captured by NASA’s New Horizons spacecraft combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). The bright expanse is the western lobe of the “heart,” informally called Sputnik Planum, which has been found to be rich in nitrogen, carbon monoxide and methane ices. (Credits: NASA/JHUAPL/SwRI)

From Pluto’s unusual heart-shaped region to its extended atmosphere and intriguing moons, New Horizons has revealed a degree of diversity and complexity in the Pluto system that few expected in the frigid outer reaches of the solar system.

WASHINGTON, D.C. (NASA PR) — The New Horizons team describes a wide range of findings about the Pluto system in its first science paper, released today. “The Pluto System: Initial Results from its Exploration by New Horizons,” led by mission Principal Investigator Alan Stern, appears as the cover story in the Oct. 16 issue of Science, just three months after NASA’s historic first exploration of the Pluto system in July.

(more…)

Scientists Wowed by Latest Pluto Images

Pluto’s Majestic Mountains, Frozen Plains and Foggy Hazes: Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA’s New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights over a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide. (Credits: NASA/JHUAPL/SwRI)
Pluto’s Majestic Mountains, Frozen Plains and Foggy Hazes: Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA’s New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights over a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.
(Credits: NASA/JHUAPL/SwRI)

LAUREL, Md. (NASA PR) — The latest images from NASA’s New Horizons spacecraft have scientists stunned – not only for their breathtaking views of Pluto’s majestic icy mountains, streams of frozen nitrogen and haunting low-lying hazes, but also for their strangely familiar, arctic look.

(more…)

New Horizons Begins Intensive Data Download Phase

False color images of Pluto and Charon. (Credit: NASA/APL/SwRI)
False color images of Pluto and Charon. (Credit: NASA/APL/SwRI)

WASHINGTON (NASA PR) — If you liked the first historic images of Pluto from NASA’s New Horizons spacecraft, you’ll love what’s to come.

Seven weeks after New Horizons sped past the Pluto system to study Pluto and its moons – previously unexplored worlds – the mission team will begin intensive downlinking of the tens of gigabits of data the spacecraft collected and stored on its digital recorders. The process moves into high gear on Saturday, Sept. 5, with the entire downlink taking about one year to complete.

(more…)

Animation of New Horizons’ Flyby of Pluto

Video Caption: The Pluto system as NASA’s New Horizons spacecraft saw it in July 2015. This animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then pass behind Pluto and see the atmosphere glow in sunlight before the sun passes behind Charon. The movie ends with New Horizons’ departure, looking back on each body as thin crescents.

NASA’s New Horizons Team Selects Potential Kuiper Belt Flyby Target

Artist's impression of NASA's New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credits: NASA/JHUAPL/SwRI/Alex Parker)
Artist’s impression of NASA’s New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credits: NASA/JHUAPL/SwRI/Alex Parker)

LAUREL, Md. (NASA PR) — NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits nearly a billion miles beyond Pluto.

(more…)

NASA’s New Horizons Team Finds Haze, Flowing Ice on Pluto

Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. (Credits: NASA/JHUAPL/SwRI)
Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. (Credits: NASA/JHUAPL/SwRI)

LAUREL, Md. (NASA PR) — Flowing ice and a surprising extended haze are among the newest discoveries from NASA’s New Horizons mission, which reveal distant Pluto to be an icy world of wonders.

(more…)

Pluto’s Mountains Continue to Astound

Mountains on Pluto. (Credit: NASA/JHUAPL/SWRI)
Mountains on Pluto. (Credit: NASA/JHUAPL/SWRI)

LAUREL, Md. (NASA PR) — A newly discovered mountain range lies near the southwestern margin of Pluto’s Tombaugh Regio (Tombaugh Region), situated between bright, icy plains and dark, heavily-cratered terrain. This image was acquired by New Horizons’ Long Range Reconnaissance Imager (LORRI) on July 14, 2015 from a distance of 48,000 miles (77,000 kilometers) and sent back to Earth on July 20. Features as small as a half-mile (1 kilometer) across are visible.

(more…)

New Photos of Pluto’s Moons Nix & Hydra

Pluto's moons Nix and Hydra. (Credit: NASA/JHUAPL/SWRI)
Pluto’s moons Nix and Hydra. (Credit: NASA/JHUAPL/SWRI)

LAUREL, Md. (NASA PR) — Pluto has five known moons. In order of distance from Pluto they are: Charon, Styx, Nix, Kerberos, and Hydra.

While Pluto’s largest moon Charon has grabbed most of the lunar spotlight, two of Pluto’s smaller and lesser-known satellites are starting to come into focus via new images from the New Horizons spacecraft. Nix and Hydra – the second and third moons to be discovered – are approximately the same size, but their similarity ends there.

(more…)

Piece of SpaceShipOne Flew Past Pluto

Mike Melvill stands atop SpaceShipOne after a suborbital flight on Sept. 29, 2004. (Credit: RenegadeAven)
Mike Melvill stands atop SpaceShipOne after a suborbital flight on Sept. 29, 2004. (Credit: RenegadeAven)

MOJAVE, Calif., July 17, 2015 (Northrop Grumman PR)– The first privately-funded vehicle to reach space and one of the most innovative crafts ever flown is part of space history again. A three-inch piece of SpaceShipOne was selected by the Johns Hopkins University Applied Physics Laboratory (APL) to accompany eight other mementos on the New Horizons spacecraft’s extraordinary journey to Pluto.

(more…)

New Horizons Reveals Pluto’s Extended Atmosphere

This figure shows how the Alice instrument count rate changed over time during the sunset and sunrise observations. The count rate is largest when the line of sight to the sun is outside of the atmosphere at the start and end times. Molecular nitrogen (N2) starts absorbing sunlight in the upper reaches of Pluto’s atmosphere, decreasing as the spacecraft approaches the planet’s shadow. As the occultation progresses, atmospheric methane and hydrocarbons can also absorb the sunlight and further decrease the count rate. When the spacecraft is totally in Pluto’s shadow the count rate goes to zero. As the spacecraft emerges from Pluto’s shadow into sunrise, the process is reversed. By plotting the observed count rate in the reverse time direction, it is seen that the atmospheres on opposite sides of Pluto are nearly identical. (Credits: NASA/JHUAPL/SwRI)
This figure shows how the Alice instrument count rate changed over time during the sunset and sunrise observations. The count rate is largest when the line of sight to the sun is outside of the atmosphere at the start and end times. Molecular nitrogen (N2) starts absorbing sunlight in the upper reaches of Pluto’s atmosphere, decreasing as the spacecraft approaches the planet’s shadow. As the occultation progresses, atmospheric methane and hydrocarbons can also absorb the sunlight and further decrease the count rate. When the spacecraft is totally in Pluto’s shadow the count rate goes to zero. As the spacecraft emerges from Pluto’s shadow into sunrise, the process is reversed. By plotting the observed count rate in the reverse time direction, it is seen that the atmospheres on opposite sides of Pluto are nearly identical. (Credits: NASA/JHUAPL/SwRI)

LAUREL, Md. (NASA PR) — Scientists working with NASA’s New Horizons spacecraft have observed Pluto’s atmosphere as far as 1,000 miles (1,600 kilometers) above the surface of the planet, demonstrating that Pluto’s nitrogen-rich atmosphere is quite extended. This is the first observation of Pluto’s atmosphere at altitudes higher than 170 miles above the planet’s surface (270 kilometers).

(more…)

Animated Flyover of Pluto’s Icy Mountain and Plains


Video Caption:
This simulated flyover of Pluto’s Norgay Montes (Norgay Mountains) and Sputnik Planum (Sputnik Plain) was created from New Horizons closest-approach images. Norgay Montes have been informally named for Tenzing Norgay, one of the first two humans to reach the summit of Mount Everest. Sputnik Planum is informally named for Earth’s first artificial satellite. The images were acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as a half-mile (1 kilometer) across are visible. Credit: NASA/JHUAPL/SWRI

New Horizons Discovers a Cold, Dense Region of Atmospheric Ions Behind Pluto

Artist’s concept of the interaction of the solar wind (the supersonic outflow of electrically charged particles from the Sun) with Pluto’s predominantly nitrogen atmosphere. Some of the molecules that form the atmosphere have enough energy to overcome Pluto’s weak gravity and escape into space, where they are ionized by solar ultraviolet radiation. As the solar wind encounters the obstacle formed by the ions, it is slowed and diverted (depicted in the red region), possibly forming a shock wave upstream of Pluto. The ions are “picked up” by the solar wind and carried in its flow past the dwarf planet to form an ion or plasma tail (blue region). The Solar Wind around Pluto (SWAP) instrument on the New Horizons spacecraft made the first measurements of this region of low-energy atmospheric ions shortly after closest approach on July 14. Such measurements will enable the SWAP team to determine the rate at which Pluto loses its atmosphere and, in turn, will yield insight into the evolution of the Pluto’s atmosphere and surface. Also illustrated are the orbits of Pluto’s five moons and the trajectory of the spacecraft. (Credits: NASA/APL/SwRI)
Artist’s concept of the interaction of the solar wind (the supersonic outflow of electrically charged particles from the Sun) with Pluto’s predominantly nitrogen atmosphere. Some of the molecules that form the atmosphere have enough energy to overcome Pluto’s weak gravity and escape into space, where they are ionized by solar ultraviolet radiation. As the solar wind encounters the obstacle formed by the ions, it is slowed and diverted (depicted in the red region), possibly forming a shock wave upstream of Pluto. The ions are “picked up” by the solar wind and carried in its flow past the dwarf planet to form an ion or plasma tail (blue region). The Solar Wind around Pluto (SWAP) instrument on the New Horizons spacecraft made the first measurements of this region of low-energy atmospheric ions shortly after closest approach on July 14. Such measurements will enable the SWAP team to determine the rate at which Pluto loses its atmosphere and, in turn, will yield insight into the evolution of the Pluto’s atmosphere and surface. Also illustrated are the orbits of Pluto’s five moons and the trajectory of the spacecraft. (Credits: NASA/APL/SwRI)

LAUREL, Md. (NASA PR) — New Horizons has discovered a region of cold, dense ionized gas tens of thousands of miles beyond Pluto — the planet’s atmosphere being stripped away by the solar wind and lost to space. Beginning an hour and half after closest approach, the Solar Wind Around Pluto (SWAP) instrument observed a cavity in the solar wind — the outflow of electrically charged particles from the Sun — between 48,000 miles (77,000 km) and 68,000 miles (109,000 km) downstream of Pluto. SWAP data revealed this cavity to be populated with nitrogen ions forming a “plasma tail” of undetermined structure and length extending behind the planet.

Similar plasma tails are observed at planets like Venus and Mars. In the case of Pluto’s predominantly nitrogen atmosphere, escaping molecules are ionized by solar ultraviolet light, “picked up” by the solar wind, and carried past Pluto to form the plasma tail discovered by New Horizons. Prior to closest approach, nitrogen ions were detected far upstream of Pluto by the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument, providing a foretaste of Pluto’s escaping atmosphere.

Plasma tail formation is but one fundamental aspect of Pluto’s solar wind interaction, the nature of which is determined by several yet poorly constrained factors. Of these, perhaps the most important is the atmospheric loss rate. “This is just a first tantalizing look at Pluto’s plasma environment,” says co-investigator Fran Bagenal, University of Colorado, Boulder, who leads the New Horizons Particles and Plasma team. “We’ll be getting more data in August, which we can combine with the Alice and Rex atmospheric measurements to pin down the rate at which Pluto is losing its atmosphere. Once we know that, we’ll be able to answer outstanding questions about the evolution of Pluto’s atmosphere and surface and determine to what extent Pluto’s solar wind interaction is like that of Mars.”