Picking up the PACE: Accelerating Development of Deep Space Technologies

Raven Aerostar’s high-altitude balloon is inflated the morning of its March 12, 2021 flight to test NASA’s V-R3x technology in Baltic, SD – an effort made possible by the Agency’s new PACE initiative. (Credits: Raven Aerostar)

By Elizabeth DiVito
NASA’s Armstrong Flight Research Center

A spacecraft is the sum of many parts – propulsion systems, radiation protection, communications systems, to name a few – and every mission has different technological needs and challenges. Before a technology innovation makes its way into deep space, however, its effectiveness can be tested a little closer to Earth through suborbital and orbital flights. These flight tests expose a technology to the challenging characteristics of spaceflight that ground testing cannot simulate, such as powerful forces of acceleration and the absence of gravity. While it offers critical benefits, this journey through several iterations of collecting flight data and fine-tuning a technology can sometimes take years and often stretches a research team’s bottom line.

(more…)

NASA, Blue Origin Partner to Bring Lunar Gravity Conditions Closer to Earth

New Shepard (NS-14) lifts off from Blue Origin’s Launch Site One in West Texas. (Credits: Blue Origin)

By Danielle McCulloch and Nicole Quenelle
NASA’s Flight Opportunities Program

EDWARDS, Calif. — At one-sixth that of Earth, the unique gravity of the lunar surface is one of the many variable conditions that technologies bound for the Moon will need to perform well in. NASA will soon have more options for testing those innovations in lunar gravity thanks to a collaboration with Blue Origin to bring new testing capabilities to the company’s New Shepard reusable suborbital rocket system.

(more…)

Comet Catalina Suggests Comets Delivered Carbon to Rocky Planets

Illustration of a comet from the Oort Cloud as it passes through the inner solar system with dust and gas evaporating into its tail. SOFIA’s observations of Comet Catalina reveal that it’s carbon-rich, suggesting that comets delivered carbon to the terrestrial planets like Earth and Mars as they formed in the early solar system. (Credits: NASA/SOFIA/Lynette Cook)

MOFFETT FIELD, Calif. (NASA PR) — In early 2016, an icy visitor from the edge of our solar system hurtled past Earth. It briefly became visible to stargazers as Comet Catalina before it slingshot past the Sun to disappear forevermore out of the solar system.

Among the many observatories that captured a view of this comet, which appeared near the Big Dipper, was the Stratospheric Observatory for Infrared Astronomy, NASA’s telescope on an airplane. Using one of its unique infrared instruments, SOFIA was able to pick out a familiar fingerprint within the dusty glow of the comet’s tail – carbon.

(more…)

Tricky Terrain: Helping to Assure a Safe Rover Landing

Mars 2020’s Perseverance rover is equipped with a lander vision system based on terrain-relative navigation, an advanced method of autonomously comparing real-time images to preloaded maps that determine the rover’s position relative to hazards in the landing area. Divert guidance algorithms and software can then direct the rover around those obstacles if needed. (Credit: NASA/JPL-Caltech)

How two new technologies will help Perseverance, NASA’s most sophisticated rover yet, touch down onto the surface of Mars this month.

PASADENA, Calif. (NASA PR) — After a nearly seven-month journey to Mars, NASA’s Perseverance rover is slated to land at the Red Planet’s Jezero Crater Feb. 18, 2021, a rugged expanse chosen for its scientific research and sample collection possibilities.

(more…)

V-R3x CubeSats to Develop Communications, Navigation

Three small satellites, or CubeSats, used in the V-R3x technology demonstration. (Credit: NASA/Ames Research Center/Dominic Hart)

Swarming small satellites to develop the next generation of communication and navigation tech

MOFFETT FIELD, Calif. (NASA PR) — Learning how to communicate and navigate multiple spacecraft autonomously in space is a technology challenge that will become even more important to solve as NASA continues to operate in low-Earth orbit and beyond.

The V-R3x mission uses a swarm of three small satellites to demonstrate new technologies and techniques for radio networking and navigation. By developing and demonstrating these technologies on a small scale, they can be implemented for future multi-spacecraft missions, enabling NASA to pursue its future science, technology, and exploration goals.

(more…)

NASA Armstrong Collaborates with Rocket Lab, Sensuron to Mature Fiber Optic Technology

EDWARDS, Calif. (NASA PR) — A system originally developed to collect distributed strain and temperature measurements on aircraft has been enhanced to support future NASA space missions. Two companies were selected by NASA through the 2020 Announcement of Collaboration Opportunity to further develop and commercialize the technology. 

The Fiber Optic Sensing System (FOSS) developed at NASA’s Armstrong Flight Research Center in Edwards, California, uses sensors that are the size of a human hair to monitor vehicle structural and thermal response. Much of the technology effort to advance FOSS for use on airplanes and rockets was funded by the Space Technology Mission Directorate’s Center Innovation Fund.

(more…)

Suborbital Space Again, NASA-supported Tech on Virgin Galactic’s SpaceShipTwo

Scientific payloads in SpaceShipTwo cabin (Credit: Virgin Galactic)

by Nicole Quenelle
NASA’s Flight Opportunities program

EDWARDS, Calif. — Successful space and suborbital technology developments require ingenuity, understanding of mission and science needs, and testing. For many technologies matured with support from NASA’s Flight Opportunities program, the ability to undergo testing multiple times – and often on different types of commercial flight vehicles – adds the necessary rigor and refinement to advance these innovations.

(more…)

NASA Awards Flight & Integration Services Contracts to Virgin Galactic, Masten Space Systems

Scientific payloads in SpaceShipTwo cabin (Credit: Virgin Galactic)

EDWARDS, Calif., November 30, 2020 (NASA PR) — NASA has selected Virgin Galactic LLC of Las Cruces, New Mexico, and Masten Space Systems Inc. of Mojave, California, to provide flight and integration services for payloads chosen by the agency’s Flight Opportunities program, which is managed at the agency’s Armstrong Flight Research Center in Edwards, California. The two companies join four others to provide service under commercial indefinite-delivery/indefinite-quantity (IDIQ) contracts with NASA.

(more…)

NASA Centers Collaborate to Advance Quiet Supersonic Technology During Pandemic

A NASA F/A-18 is towed to the apron at NASA’s Armstrong Flight Research Center in Edwards, California during sunrise over Rogers Dry Lake. The F/A-18 was used to test a transmitter for an air navigation system, called the Airborne Location Integrating Geospatial Navigation System, or ALIGNS. This system, designed to allow pilots to position their aircraft at precise distances to each other, will be critical for acoustic validation efforts of NASA’s next supersonic X-plane, the X-59 Quiet SuperSonic Technology. (Credits: NASA/Lauren Hughes)

EDWARDS, Calif. (NASA PR) — Two NASA centers on opposite sides of the countries are finding new ways to work together to support the agency’s mission to develop quiet supersonic technology, in spite of thousands of miles of distance and a global pandemic.

Using their available labs, Kennedy Space Center in Florida is building tools in collaboration with Armstrong Flight Research Center in California, which NASA will use in support of the X-59 Quiet SuperSonic Technology X-plane, or QueSST.

(more…)

NASA Selects 31 Promising Space Technologies for Commercial Flight Tests

by Nicole Quenelle
NASA’s Flight Opportunities Program

NASA has selected 31 promising space technologies for testing aboard parabolic aircraft, high-altitude balloons, and suborbital rocket-powered systems. By exposing the innovations to many of the rigors and characteristics of spaceflight – without the expense of an orbital flight – NASA can help ensure these technologies work correctly when they are deployed on future missions.

“By supporting suborbital flight testing, our Flight Opportunities  program aims to help ensure that these innovations are well-positioned to address challenges and enable NASA to achieve its lunar ambitions, while also contributing to a growing and vibrant commercial space industry,” said Jim Reuter, associate administrator of NASA’s Space Technology Mission Directorate (STMD). The Flight Opportunities program is part of STMD.

(more…)

Testing Super Foods for Space and More on Blue Origin Suborbital Flight

The microgravity LilyPond growth chamber uses capillary action to provide a stable water surface on which duckweed (and potentially other veggies, like microgreens) can grow. LED panels provide an efficient light source, and a salad spinner-like sieve helps separate the water from the plants when ready to harvest. (Credits: Space Lab Technologies)

Duckweed: it’s what’s for dinner

by Nicole Quenelle
NASA Armstrong Flight Research Center

EDWARDS, Calif. — It’s no surprise to most of us that regularly eating fresh produce is a great way to support a healthy diet. Fresh fruits and vegetables benefit astronauts on the International Space Station, too – and soon the Moon and beyond. Scientists are investigating sustainable ways to grow highly nutritious foods in microgravity, to give space explorers a readily available supply of daily greens.

(more…)

NASA Marks Continued Progress on X-59

NASA’s X-59 Quiet SuperSonic Technology X-plane, or QueSST, will fly over communities in the United States to demonstrate quiet supersonic. (Credits: Lockheed Martin)

by Matt Kamlet
NASA Armstrong Flight Research Center

PALMDALE, Calif. — Assembly of NASA’s X-59 Quiet SuperSonic Technology aircraft is continuing during 2020 and making good progress, despite challenges such as those imposed by the unexpected global pandemic.

NASA plans as early as 2024 to fly the X-59 over select communities on missions to gather information about how the public will react to the level of quiet supersonic flight noise the aircraft is designed to produce – if they hear anything at all.

(more…)

IG Report: NASA’s SOFIA Not Meeting Expectations

SOFIA flying observatory (Credit: NASA-Jim Ross)

by Douglas Messier
Managing Editor

NASA’s flying Stratospheric Observatory for Infrared Astronomy (SOFIA) has struggled to meet its scientific expectations due to a lengthy development delay and a series of technical, operational and managerial challenges, according to a new audit from the agency’s Office of Inspector General (IG).

(more…)

Wheelock Readies Astronauts for Moon Landing

NASA astronaut Doug Wheelock

EDWARDS, Calif. (NASA PR) — Astronaut  Doug “Wheels” Wheelock spent his NASA career expanding knowledge of living and working in space. His new mission is working to determine the best way to train astronauts to return to the surface of the Moon.

Wheelock is a veteran test pilot and retired U.S. Army colonel who has accumulated 178 days in space and was a guest speaker at NASA’s Armstrong Flight Research Center in California during a recent virtual Safety Day. During his NASA career he conducted six spacewalks, flew in Space Shuttle Discovery and the Russian Soyuz and served as International Space Station Expedition 25 commander.

(more…)

NASA Takes Delivery of GE Jet Engine for X-59 Supersonic Demonstrator

The F414-GE-100 engine, which will power NASA’s X-59 Quiet SuperSonic Technology X-plane (QueSST) in flight, is unboxed at NASA’s Armstrong Flight Research Center in Edwards, California. The engine, one of two delivered by GE, is approximately 13 feet long, and will power X-59 on missions to gather information about how the public perceives the sounds of quieter supersonic flight. (Credits: NASA / Ken Ulbrich)

EDWARDS, Calif. (NASA PR) — Mark the big one-of-a-kind engine, designed and built just for NASA, as delivered.

Nearly 13 feet long, three feet in diameter, and packing 22,000 pounds of afterburner enhanced jet propulsion, the F414-GE-100 engine is now at NASA’s Armstrong Flight Research Center on Edwards Air Force Base in California.

(more…)