NASA Funds Research into Small Robots Designed to Explore Martian Caves

Illustration of ReachBot traversing a Martian cavern using microspine grippers across different types of treacherous terrain: (left) a vertically winding tunnel with a rocky and uneven floor, (center) an overhanging wall or ceiling, and (right) a sheer vertical wall in a large cavern or on a cliff. (Credits: Marco Pavone)

NASA Innovative Advanced Concepts (NIAC) Phase I Award
Funding: up to $125,000
Study Period: 9 months

ReachBot: Small Robot for Large Mobile Manipulation Tasks
in Martian Cave Environments
Marco Pavone
Stanford University
Stanford, Calif.

Synopsis

The objective of this effort is to develop a mission architecture where a long-reach crawling and anchoring robot, which repurposes extendable booms for mobile manipulation, is deployed to explore and sample difficult terrains on planetary bodies, with a key focus on Mars exploration. To this end, the robot concept we present here, called ReachBot, uses rollable extendable booms as manipulator arms and as highly reconfigurable structural members.

(more…)

Futuristic Space Technology Concepts Selected by NASA for Initial Study

This illustration shows a conceptual lunar railway system called FLOAT (Flexible Levitation on a Track) that has been selected for an early-stage feasibility study within the NASA Innovative Advanced Concepts program. (Credit: NASA/JPL-Caltech)

PASADENA, Calif. (NASA PR) — Four advanced space concepts from NASA’s Jet Propulsion Laboratory have been selected to receive grants for further research and development.

(more…)

Proposed Spacecraft Would Hop and Roll Over Asteroids, Moons

Spacecraft/rover hybrids (Credit: Marco Pavone)
Spacecraft/rover hybrids (Credit: Marco Pavone)

The NASA Innovative Advance Concepts (NASA) program has awarded Marco Pavone of Stanford University a Phase II grant to continue development of small exploration vehicles that would hop and tumble across the surfaces of asteroids, moons and comets.

The spacecraft/rover hybrids would be deployed from a mother ship orbiting the body to be explored. Their movements would be controlled by three internal flywheels.

The award is worth up to $500,000. The earlier Phase I award was worth up to $100,000.

NASA awarded five NIAC Phase II contracts in this round of funding.

Pavone’s summary of the project follows.

(more…)