Vector Space Systems Selected for NASA Small Business Funding

NASA’s Marshall Space Flight Center (MSFC) additive manufactured injector by was successfully hot fire tested by Vector Space System on Dec. 8, 2016 using Liquid Oxygen/Propylene propellant (LOX/LC3H6). This work was performed under a 2015 STMD ACO Space Act Agreement. (Credit: Vector Space System)

Vector Space Systems has been selected for a NASA Small Business Innovation Research (SBIR) Phase I contract to develop new technology for the company’s Vector-R small satellite launch vehicle.

“In the proposed concept, electrically-driven micropumps drive a small portion of each propellant over a heat exchanger at the engine to pressurize the tanks. Excess flow can be diverted to the engine as needed,” the proposal states.

“This approach reduces system mass, complexity and acquisition cost as well as operational costs,” the proposal adds. “It eliminates the need for all high-pressure tanks and associated components.”

The Vector-R is a 2-stage pressure-fed, LOX/subcooled propylene launch vehicle designed to place payloads weighing up to 60 kg in low earth orbit.

SBIR Phase I awards are worth a maximum of $125,000 over six months.

A summary of the selected proposal follows.

Proposal Title: Flight Demonstration of a Micropump-based Stage Pressurization System
Subtopic Title: Small Launch Vehicle Technologies and Demonstrations

Small Business Concern
Vector Launch Inc.
Tucson, AZ

Principal Investigator/Project Manager
Christopher Bostwick
Los Alamitos, CA

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 2
End: 4

Technical Abstract

Vector Launch, Inc. proposes to apply recent advances in micropump and additive manufacturing technologies to develop and demonstrate a micropump-based autogenous pressurization system for its commercial Vector-R first stage and mature the technology with multiple static-fire-tests leading to a demonstration flight test (TRL 6).

The Vector-R is a 2-stage pressure-fed, LOX/subcooled propylene commercial small launch vehicle, designed to place up to 60 kg in low earth orbit. In the proposed concept, electrically-driven micropumps drive a small portion of each propellant over a heat exchanger at the engine to pressurize the tanks. Excess flow can be diverted to the engine as needed.

This approach reduces system mass, complexity and acquisition cost as well as operational costs. It eliminates the need for all high-pressure tanks and associated components. It can be used on any pressure-fed stage, for launch vehicle and in-space application when using high vapor pressure propellants such as LOX/methane or LOX/propane. As such, it is an enabler for missions targeted to use in-situ propellants since the need for a separate pressurant like helium is either greatly reduced or eliminated.

By leveraging Vector’s ongoing Vector-R micro-launcher development, it is possible to reach TRL 6 with demonstration flight testing during Phase II.

Potential NASA Commercial Applications

The technology offers the means of drastically reducing the mass, complexity and cost of pressure-fed propulsion stages employing high vapor pressure propellants like LOX, methane, propylene and propane. The reductions in costs apply to both acquisition and operational costs of propulsive stages since the proposed system is simpler and lighter.

Applications include small launch vehicle stages where turbo-pumps are inefficient and cost-prohibitive. For Vector, the immediate application of the technology which could benefit NASA is the Vector-R launch vehicle. This vehicle is designed to provide dedicated launch services to nanosats up to 60 kg, with planned operations starting in 2018.

Candidate small spacecraft which could benefit from dedicated launch services or reduced launch costs provided by the technology include numerous CubeSats and nanosats in development at NASA or funded by NASA, such as NASA’s CubeSat Launch Initiative and Educational Launch of Nanosatellites.

Other longer term potential applications include future missions to Mars and other bodies which use pressure-fed systems, whether directly or in conjunction with pump-fed engines. For Mars ascent, this technology is particularly attractive when using in-situ propellants since it eliminates the need for a pressurant like helium. The application of this technology for Mars missions is likely to be years away.

Potential Non-NASA Commercial Applications

With the Vector-R micro-launcher, Vector is positioning itself to provide responsive, dedicated launch to the micro- and nanosat market expected to burgeon in the next few years. Candidate small spacecraft which could benefit from dedicated services or reduced launch costs provided by the technology include commercial entities operating constellations, such Planets (formerly known as Planet Labs) and Google’s Terra Bella (formerly known as Skybox Imaging), as well as numerous other CubeSats and nanosats development efforts funded NSF, the Air Force, ORS and SMDC. Aggregators such as Spaceflight Industries would also benefit of the availability of dedicated, responsive launch for their numerous customers, particularly those targeting specific orbits or mission timelines.

Technology Taxonomy Mapping

  • Conversion
  • Fuels/Propellants
  • Heat Exchange
  • Launch Engine/Booster
  • Spacecraft Main Engine

Save

  • JamesG

    So…. no. Vector doesn’t even really have an engine yet, even after buying Garvy. I’m sure that $125K will buy a lot more press releases.

  • SteveW

    And Vector has promised test launches this year from Spaceport Camden that is still awaiting the release of the Draft EIS. Not only does Vector not have a suitable rocket engine, they haven’t demonstrated a guidance system. It’s likely that the US Navy would veto any launches of test rockets less than 9 miles north of Kings Bay Submarine Base, home of the Atlantic Ballistic Sub Fleet.

    It’s good that there are companies like Vector striving to find a niche through innovation and invention. And NASA ‘investing’ a small amount in what may be a good concept is reasonable. But it is simply misleading for Vector to hype ‘future’ technologies and capabilities as if they already exist. Vector’s towing of a Vector-R mockup to Kennedy and Camden with qualifier-laden talk about expected launches as if it is almost ready to go is strictly for PR. But folks in Camden County can be mislead into investing in a spaceport that Vector (or ARCA or XCOR or FireFly or Armadillo or ….) is nowhere ready to use for launching satellites to orbit. Winning a $125K grant for research is more like where they really appear to be so congratulations on that and quit the hyperbole.

  • TRL 2?

    Are they saying that we’ve observed a natural phenomenon and there may be applications for it, by they are entirely speculative at this point? Don’t you want to be a little further along than a TWO?

  • Jacob Samorodin

    The increasing clutter of commercial spaceflight projects, not just the comatose ‘space tourism’ efforts, have become (with a few exceptions like SpaceX) increasingly suspect as far as reliability and veracity are concerned. What do many of these projects and efforts have in common?
    1) Secrecy (no one is saying when they will launch for sure; how their hardware tests are going? or what progress have they made building hardware meant to be launched, to soar, or to orbit?). Secrecy and coyness so pervasive from these billionaire-geeks and their people that it probably makes Area-51 staff envious.
    2) Ever-shifting ‘optimistic’ launch or vehicle completion time-frames.
    3) Starry-eyed positive claims of frequent payload launches, lower launch fees, and plenty of customers.
    I don’t have a shovel big enough to move all that s–t that they spout.

  • Kapitalist

    Axiom is a sharp contrast to your new space description, a rare exception. It’s staffed by former ISS managers and Shuttle astronauts and they are not crowdfunded, nor funded by a single eccentric billionaire, and they will not launch tourists. They will build a space station starting with one module attached to the ISS. It is as if they were in an ordinary industry, not this space circus!