Pioneer Astronautics Selected for Two NASA SBIR Phase II Awards

pioneer_astronautics_logoBob Zubrin’s Pioneer Astronautics has been selected for two NASA Small Business Innovation Research (SBIR) Phase II awards to continue development of a system to extract volatile elements from asteroids and a new rocket engine.

Pioneer’s Carbonaceous Asteroid Volatile Recovery (CAVoR) system “produces water and hydrogen-rich syngas for propellant production, life support consumables, and manufacturing from in-situ resources in support of advanced space exploration,” according to the project’s technical abstract.

“The CAVoR thermally extracts ice and water bound to clay minerals, which is then combined with small amounts of oxygen to gasify organic matter contained in carbonaceous chondrite asteroids,” the abstract states.

Pioneeer’s other project involves the development of a nitrous ethane-ethylene rocket with hypergolic ignition.

The engine is “designed to provide small spacecraft with non-toxic, non-cryogenic, high performance, hypergolic propulsion,” the project’s technical abstract states. “When passed over a warm catalyst bed, gaseous nitrous oxide and an ethylene-ethane gaseous blend combust instantly.”

Descriptions of both projects follow.

NASA SBIR PHASE II AWARD

Pioneer Astronautics
Lakewood, CO

Proposal Title: Carbonaceous Asteroid Volatile Recovery (CAVoR) system
Subtopic Title: Regolith ISRU for Mission Consumable Production

Principal Investigator/Project Manager
Mark Berggren

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 4
End: 5

Technical Abstract

The Carbonaceous Asteroid Volatile Recovery (CAVoR) system produces water and hydrogen-rich syngas for propellant production, life support consumables, and manufacturing from in-situ resources in support of advanced space exploration. The CAVoR thermally extracts ice and water bound to clay minerals, which is then combined with small amounts of oxygen to gasify organic matter contained in carbonaceous chondrite asteroids. In addition to water, CAVoR produces hydrogen, carbon monoxide, and carbon dioxide that comprise precursors to produce oxygen for propellant and breathing gas and to produce organic compounds including fuels such as methane when integrated with a downstream methanation-electrolysis. Thermochemical production of hydrogen by CAVoR results in substantial reductions in electrolysis mass and power requirements compared to combustion-based volatile recovery methods. A conceptual Phase II continuous flow auger reactor design was based on successful Phase I batch reactor operations. Phase II advancements will include reactor seal designs to accommodate regolith simulant feeding and discharging while collaborations will be developed to aid the infusion of the CAVoR system into a conceptual asteroid resource utilization mission plan.

Potential NASA Commercial Applications

The primary application of the carbonaceous asteroid volatile recovery (cavor) system is to provide a compact, high performance apparatus for the extraction and recovery of water and organic matter in support of propellant production, breathing gas, and life support. The in-space production of these mission critical items results in substantial launch cost savings and can help to enable the extension of NASA’s mission beyond low earth orbit to include long-duration space habitation, lunar, and Mars colonization missions.

Potential Non-NASA Commercial Applications

The autothermal steam reforming technology proposed for the CAVoR has applications in the recovery of water and energy values from terrestrial wastes and resources. Steam reforming technology has mostly been applied to feed matter containing only small amounts of inorganic matter. The efficient use and recovery of process heat to be established during the CAVoR program will enable non-catalytic autothermal steam reforming technology to be applied to feeds such as contaminated soils, low-grade hydrocarbon feeds, oil shale, un-sorted municipal waste, and other organic materials, including renewable resources. By so doing, many otherwise refractory, hazardous compounds can potentially be broken into syngas constituents for use as fuels rather than being incinerated with no economic gain. The CAVoR technology will be poised for entry into the growing market demand for waste volume reduction and low-grade fuels resources. The device solves a variety of industrial and municipal waste challenges with minimal environmental impact.

NASA SBIR PHASE II AWARD

Pioneer Astronautics
Lakewood, CO

Proposal Title: Nitrous Ethane-Ethylene Rocket with Hypergolic Ignition
Subtopic Title: Propulsion Systems for Robotic Science Missions

Principal Investigator/Project Manager
Robert Zubrin

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 4
End: 6

Technical Abstract

The Nitrous Ethane-Ethylene Rocket with Hypergolic Ignition (NEERHI) engine is a proposed technology designed to provide small spacecraft with non-toxic, non-cryogenic, high performance, hypergolic propulsion. When passed over a warm catalyst bed, gaseous nitrous oxide and an ethylene-ethane gaseous blend combust instantly. A small 1 N thruster can be designed to provide small satellite propulsion systems with a specific impulse of approximately 300 seconds. Both propellants are self-pressurizing, capable of delivering feed line pressures in excess of 800 psi at room temperature, and 400 psi if cooled to 0 C. For longer duration missions, both nitrous oxide and an ethane-ethylene fuel blend do not require thermal heating to maintain a liquid state, and as such, can be stored on Earth or in space for in-definite periods of time with no parasitic power drain required to maintain a liquid propellant. Compared to other available chemical propulsion systems, a NEERHI system offers a cost effective solution as other hypergolic engines use hydrazine and nitrogen tetroxide which are toxic and dangerous to handle, increasing ground costs. As an added capability, the NEERHI engine has the ability to operate as a monopropellant engine if the catalyst be is heated with a bipropellant reaction, increasing the lifetime of the catalyst bed and reducing heating loads on the engine. The fuel and oxidizer have nearly identical vapor pressure curves, allowing them to be stored in compact common-bulkhead tanks.

Potential NASA Commercial Applications

A NEERHI system is capable of replacing any monopropellant or bipropellant space propulsion system currently used by NASA with a green propellant, self-pressurizing, cold-storable, hypergolic rocket system. The recent MAVEN mission, which uses a propulsion system based off of the Mars Reconnaissance Orbiter, uses a total of 20 hydrazine monopropellant thrusters. A NEERHI system could be adapted to future missions to provide a greater specific impulse with a much lower ground cost due to the low toxicity of the propellants. Future lunar missions, which have historically used an NTO and MMH propellant engine, could use a NEERHI system to not only provide RCS thrust, but the nitrous oxide can also be used to produce a breathable atmosphere for any manned mission. The current technology roadmap for NASA also features a main propulsion unit for the micro-satellite, which could employ a NEERHI engine to provide delta-V maneuvers, station keeping, and even Earth-escape missions. Almost all satellite systems that don’t have ion RCS systems could greatly benefit from the integration of a NEERHI unit to reduce the launch cost of the system.

Potential Non-NASA Commercial Applications

A NEERHI system can be used on any commercial satellite system that requires a simple, hypergolic, RCS propulsion unit but wishes to avoid the difficulties encountered when working with a nitrogen tetroxide and hydrazine system. The NEERHI can be used in the emerging cubesat industry, were the primary development teams are university students designing their first space system. A NEERHI engine would provide a safe and affordable system for universities that often have rigorous safety standards, and as such, avoid current hydrazine-based propulsion. In the new field of commercial crew development efforts, the SpaceX capsule currently uses the Draco rocket engine to provide attitude control. The Draco uses an MMH and NTO propellant combination. A NEERHI system could be built to replace these thrusters, and with a supply of Nitrous oxide onboard, future Dragon spacecraft could use the nitrous to produce breathing air instead of bringing along an additional system, taking up mass and space on the craft. A hypergolic and green propellant is the solution sought by all companies to phasing out the use of the dangerous hydrazine-based thrusters, and the NEERHI program could revolutionize the market.